Uterine NDRG2 expression is increased at implantation sites during early pregnancy in mice, and its down-regulation inhibits decidualization of mouse endometrial stromal cells
نویسندگان
چکیده
BACKGROUND N-myc down-regulated gene 2 (NDRG2) is a tumor suppressor involved in cell proliferation and differentiation. The aim of this study was to determine the uterine expression pattern of this gene during early pregnancy in mice. METHODS Uterine NDRG2 mRNA and protein expression levels were determined by RT-PCR and Western blot analyses, respectively, during the peri-implantation period in mice. Immunohistochemical (IHC) analysis was performed to examine the spatial localization of NDRG2 expression in mouse uterine tissues. The in vitro decidualization model of mouse endometrial stromal cells (ESCs) was used to evaluate decidualization of ESCs following NDRG2 knock down by small interfering RNA (siRNA). Statistical significance was analyzed by one-way ANOVA using SPSS 19.0 software. RESULTS Uterine NDRG2 gene expression was significantly up-regulated and was predominantly localized to the secondary decidual zone on days 5 and 8 of pregnancy in mice. Its increased expression was associated with artificial decidualization as well as the activation of delayed implantation. Furthermore, uterine NDRG2 expression was induced by estrogen and progesterone treatments. The in vitro decidualization of mouse ESCs was accompanied by up-regulation of NDRG2 expression, and knock down of its expression in these cells by siRNA inhibited the decidualization process. CONCLUSIONS These results suggest that NDRG2 might play an important role in the process of decidualization during early pregnancy.
منابع مشابه
Erratum: Uterine NDRG2 expression is increased at implantation sites during early pregnancy in mice, and its down-regulation inhibits decidualization of mouse endometrial stromal cells
After publication of this article [1], the authors noticed an error in Fig. 5: in panel c, the bands produced by NDRG2 and beta-actin were incorrectly labelled. The original version of this article has been updated to correct this. The correct figure is shown below: expression is increased at implantation sites during early pregnancy in mice, and its down-regulation inhibits decidualization of ...
متن کاملExtracellular Signal-Regulated Kinase 1/2 Signaling Pathway Is Required for Endometrial Decidualization in Mice and Human
Decidualization is a crucial change required for successful embryo implantation and the maintenance of pregnancy. During this process, endometrial stromal cells differentiate into decidual cells in response to the ovarian steroid hormones of early pregnancy. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are known to regulate cell proliferation and apoptosis in multiple cell ty...
متن کاملKrüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization
BACKGROUND Decidualization is a prerequisite for successful implantation and the establishment of pregnancy. Krüppel-like factor 12 (KLF12) is a negative regulator of endometrial decidualization in vitro. We investigated whether KLF12 was associated with impaired decidualization under conditions of repeated implantation failure (RIF). METHODS Uterine tissues were collected from a mouse model ...
متن کاملOsteopontin Is Expressed in the Mouse Uterus during Early Pregnancy and Promotes Mouse Blastocyst Attachment and Invasion In Vitro
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. I...
متن کاملExpression of mmu-miR-96 in the endometrium during early pregnancy and its regulatory effects on stromal cell apoptosis via Bcl2
Decidualization of endometrial stromal cells is an important feature of implantation and pregnancy. The molecular mechanism underlying decidualization remains unclear, particularly regarding the microRNA (miRNA/miR) regulation of this process. The present study revealed the temporal and spatial distribution of mmu‑miR‑96 in the mouse uterus during early pregnancy by reverse transcription‑quanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015